Theorem. Given n integers with integer average, some permutation of them is a valid siteswap.

Lemma. Given n numbers which can be rearranged into a valid siteswap, if we change two of the numbers such that the average is still an integer, then the new set can also be rearranged into a valid siteswap.

Proof of Lemma. All arithmetic below is mod n. Assume that the starting sequence is already in valid siteswap order. Let t_{i} be the $i^{\text {th }}$ throw and let $l_{i}=i+t_{i}$ be its landing time. We have

$$
\begin{array}{cccc}
1 & 2 & \ldots & n \\
t_{1} & t_{2} & \ldots & t_{n} \\
l_{1} & l_{2} & \ldots & l_{n}
\end{array}
$$

Let us replace throws t_{i} and t_{j} by throws x_{i} and x_{j}, such that the resulting sequence still has integer average. Therefore, $t_{i}+t_{j}=x_{i}+x_{j}$, and so $\left(i+x_{i}\right)+\left(j+x_{j}\right)=l_{i}+l_{j}$. (夫)

Using (\star), we get: if $i+x_{i}=l_{i}$, we already have a siteswap; if $i+x_{i}=l_{j}$, we swap $l_{i} \leftrightarrow l_{j}$; if $i+x_{j}=l_{i}$, we swap $x_{i} \leftrightarrow x_{j}$; and if $i+x_{j}=l_{j}$, we swap both $x_{i} \leftrightarrow x_{j}$ and $l_{i} \leftrightarrow l_{j}$.

In any of those cases, we are done. But if none of those hold, let $k=l_{i}-x_{i}$. Then $k \neq i$ and $k \neq j$, and k is the time at which throw x_{i} must happen in order to land at time l_{i}. We must therefore move the throw that is already occurring at time k. Rearrange the entries in the table:

$$
\begin{array}{ccccccccccccccc}
\ldots & i & \ldots & j & \ldots & k & \ldots \\
\ldots & x_{i} & \ldots & x_{j} & \ldots & x_{k} & \ldots \\
\ldots & l_{i} & \ldots & l_{j} & \ldots & l_{k} & \ldots
\end{array} \quad \longrightarrow \quad \begin{array}{ccccc}
\ldots & i & \ldots & j & \ldots \\
k & k \\
\ldots & x_{k} & \ldots & x_{j} & \ldots \\
x_{i} & \ldots \\
\ldots & l_{j} & \ldots & l_{k} & \ldots \\
l_{i} & \ldots
\end{array}
$$

Column k is valid, so we try to resolve the problems that still exist in columns i and j. Since $k=l_{i}-x_{i}=l_{k}-x_{k}$, equation (\star) implies $\left(i+x_{k}\right)+\left(j+x_{j}\right)=l_{j}+l_{k}$, and thus an equivalent equation holds for the new columns i and j. Therefore, we may relabel the x and l terms and repeat the whole procedure, using the new entries in these columns. We must show that this terminates in a finite number of steps, and it is sufficient to show that each k we find is distinct.

Suppose that we encounter a repeat, and let k be the number with the earliest repeat. Let us continue from the rearrangement we made above, assuming that we haven't fallen into one of the earlier finishing cases. We let $k^{\prime}=l_{j}-x_{k}$ and move l_{j} into column k^{\prime}. Since $k=l_{k}-x_{k}$ and $l_{j} \neq l_{k}$, we know $k^{\prime} \neq k$. Furthermore, l_{j} will stay in column k^{\prime} until the next occurrence of k^{\prime}. However, since we are assuming that k is the first repeat, l_{j} must still be in column k^{\prime} at the time of k 's repeat. When we next encounter k, we change the table:

Equation (\star) for the new position here is $\left(i+x_{i}\right)+\left(j+x_{j}\right)=l_{j}^{\prime}+l_{i}$. However, from the original equation (\star), we know that $\left(i+x_{i}\right)+\left(j+x_{j}\right)=l_{i}+l_{j}$. Therefore, $l_{j}=l_{j}^{\prime}$. This is a contradiction, since we know that at this point l_{j}^{\prime} is in column k^{\prime}.

Proof of Theorem. Suppose we have the numbers a_{1}, \ldots, a_{n}. Start with the valid siteswap consisting of $n 0 \mathrm{~s}$. Change the first two 0 s to a_{1} and $n-a_{1}$. By the Lemma, some permutation of these is a valid siteswap. Now change that $n-a_{1}$ to a_{2}, and the third 0 to $n-a_{1}-a_{2}$, and so on. Since the a_{i} have integer average, after we change the second-to-last 0 to a_{n-1}, we must also have changed the final 0 to a_{n}, up to a multiple of n, and this takes a trivial final change.

Acknowledgements. The above is an adaptation of the proof found in The Mathematics of Juggling by Burkard Polster.

